High Performance Computing

3. Hardware Platforms for High-Performance
Embedded Computing

Andrea Marongiu
(andrea.marongiu@unimore.it)
AA 2018-2019

mailto:andrea.marongiu@unimore.it

Recall from previous class
The Dim Horseman (#2)

90

Dark silicon “We will fill the chip with
homogeneous cores that would
exceed the power budget

but we will underclock

them (spatial dimming), or use them
all only in bursts (temporal dimming)

. “dim silicon”’, v

Temporal Dimming

Spatial Dimming _ Thermally limited systems
« Genlé&2 multicores (higher core . ARM Big-little (A15 power usage way above
counts = lower freqs) sustainable for phone = 10sec burst at most)
* Near-threshold voltage operation -+ Battery-limited systems
* Quad-core mobile application processor

Recall from previous class

The Specialized Horseman (#3)

Dark silicon “We will use all of that dark silicon m 90

area to build specialized

cores, each of them tuned for

the task at hand (10-100x more l 3
¢

energy efficient), and only turn
Heterogeneous on the ones we need...”
Systems-on-Chip

(SOC) [e.g., Venkatesh et al., ASPLOS 2010,
Lyons et al., CAL 2010,

Goulding et al., Hotchips 2010,

Hardavellas et al. IEEE Micro 2011]

Specialization is the goal behind architectural heterogeneity

Evolution of multicores

Classification of multicore processors
according to the layout of their CPU cores

Multicores with
homogeneous CPU cores

/\

Traditional
MC processors

2< n =< 32 cores

/\

Mobiles/

desktops Servers

HE BEEER

HE EHEEN
HE EE
N N

Mainstream computing
(since 2001-2006)

Mobiles (2006)

Manycore
processors

with n > 32 cores

Experimental (2007-2010)

production systems,
Intel's Xeon Phi (2012)

/\

Multicores with
heterogeneous CPU cores

big.LITTLE
processors

Cluster of
big cores

Cluster of
LITTLE cores

CP | CPU
uo 1

CPU | CPU
2 3

Mobiles (since 2011)

Evolution of multicores

Multicore and manycore processors

With core counts exceeding certain limits, e.g. recently 16 or 32 cores, some architectural
subsystems become incapable to suitable support the increased number of cores, e.g.

» to provide high enough memory bandwidth or
« to provide a fast enough core to core communication.

Therefore, such processors need a novel microarchitectures and will be typically
called manycore processors to distinguish them from traditional built multicore
processors.

Multicores for mobile: Big-Little

Big Quad-core

CPU

Big CPU Little CPU Power consumption (mW)
High performance for Low power
compute intensive execution of majority
applications workloads

A mobile with heterogeneous CPU cores: Samsung Exynos 5 Octa 5410
in big.LITTLE configuration (2013 revealed)

Principle of operation:

The big or the LITTLE core cluster is allocated for a task according to its performance demand,
the cluster of big cores is allocated to compute intensive tasks whereas the cluster of LITTLE
cores to less demanding tasks.

http://images.anandtech.com/doci/6768/Screen%20Shot%202013-02-20%20at%2012.42.41%20PM.png

ARM big.LITTLE

GIC-400

‘ Interrupts ‘ ‘ Interrupts ‘

Memory Controller System Port
Ports

DVFS (Dynamic Voltage and Frequency Scaling)
Task Migration

SW Overhead

Memory coherency

100%
0%
Bo%
TR
a0
Lok
40%
0%
0%
10%

0%

ARM big.LITTLE Energy Saving

- | ! I !
—

20 Min Violce Call

B 200 MHz B 500 MHz
Run {no OFF [WH

Camcorder-1080p

BO0 MHz
W OFF

Facebiook 20rmin Ale Download Wi Mewsrob RSS Sync 30min
W1 GHz W 12GHz
B Cluster Off big.LITTLE Performance and Energy - Web

Browsing + mp3 audio
120%

100%
80%
60%
40%
20%

0% -

Cortex-A15 big.LITTLE MP

B performance

¥ Energy

Principle of ARM big.LITTLE technology

Usage models of synchronous adaptive SMPs in the n+n configuration

! |
Exclusive/inclusive The cluster |
use of the clusters migration model |

Principle of ARM big.LITTLE technology

Exclusive/inclusive use of the clusters

Q/\O

Exclusive use Inclusive use
of the clusters of the clusters
Clusters are used exclusively, Clusters are used inclusively,
i.e. at a time one of the clusters is in use i.e. at a time both clusters can be used
as shown below for the cluster migration model partly or entirely

(to be discussed later)

Low load High load Low load High load
Cluster of Cluster of Cluster of Cluster of
big cores big cores big cores big cores

Cluster of Cluster of
LITTLE cores LITTLE cores
CPUO | CPU1
CPUO | CPU1 CPUO || CPU1
CPU2 CPU3

CPU2 CPU3 CPU2 CPU3

Cluster of Cluster of
LITTLE cores LITTLE cores
CPUO f§ CPU1
CPUO | CPU1 CPUO § CcPU1
CPU2 CPU3
CPU2 || CPU3 CPU2 || CPU3

Cache coherent interconnect Cache coherent interconnect Cache coherent interconnect Cache coherent interconnect

Principle of ARM big.LITTLE technology

The cluster migration model

@/\

Exclusive use Inclusive use
of the clusters of the clusters
Cluster migration Core migration Core migration

1]
1] B> 2
n <> .
1] B> e
#
_JH
big.LITTLE processing big.LITTLE processing big.LITTLE MP

with cluster migration with core migration

Principle of ARM big.LITTLE technology

Big.LITTLE processing with cluster migration [5]

« There are two core clusters, the LITTLE core cluster and Cluster
the big core cluster. Migration

« Tasks run on either the LITTLE or the big core cluster, so
only one core cluster is active at any time (except a short

interval during a cluster switch). 0
 Low workloads, such as background synch tasks, audio or 1

video playback run typically on the LITTLE core cluster. 1 <
« If the workload becomes higher than the max performance 1]

of the LITTLE core cluster the workload will be migrated
to the big core cluster and vice versa.

Principle of ARM big.LITTLE technology

Cluster switches [6]

Cluster selection is driven by OS power management.

OS (e.g. the Linux cpufreq routine) samples the load for all cores in the cluster
and selects an operating point for the cluster.

It switches clusters at terminal points of the current clusters DVFS curve, as
illustrated in the next Figure.

Principle of ARM big.LITTLE technology

Highest Cortex-A 15 Operating Point

Overdrive condition

DVFS operating points

——Cortex-A15 (Low power core)

-#-Cortex-A7 (High performance core)

Power

«Lowest|Cortex-A15 Operating Point

I’T././‘/. Highest Cortex-A7 Opérating Point Power/perfo rmance curve
0

west Cortex-A7 Operating Point during cluster switching [7]

Performance

« A switch from the low power cluster to the high performance cluster is
an extension of the DVFS strategy.

« A cluster switch lasts about 30 kcycles.

Principle of ARM big.LITTLE technology

Big.LITTLE processing with core migration [5], [8]

There are two core clusters, the LITTLE core cluster and

the big core cluster.
« Cores are grouped into pairs of one big core and one

LITTLE core.
The LITTLE and the big core of a group are used exclusively. U
« Each LITTLE core can switch to its big counterpart if it meets a 5
higher load than its max. performance and vice versa.

- Each core switch is independent from the others. nen
—

Principle of ARM big.LITTLE technology

Core switches [6]

Core selection in any core pair is performed by OS power management.

The DVFS algorithm monitors the core load.

When a LITTLE core cannot service the actual load, a switch to its big
counterpart is initiated and the LITTLE core is turned off and vice versa.

Principle of ARM big.LITTLE technology

big.LITTLE MP processing with core migration [8],[5]

The OS scheduler has all cores of both clusters at its
disposal and can activate all cores at any time.

Tasks can run or be moved between the LITTLE cores and
the big cores as decided by the scheduler.

big.LITTLE MP termed also as Heterogeneous Multiprocessing
(HMP).

big.LITTLE in recent mobile processors

big.LITTLE tecnology

o/\

Exclusive use Inclusive use
of the clusters of the clusters
Cluster migration Core migration Core migration
big.LITTLE processing big.LITTLE processing big.LITTLE MP
with cluster migration with core migration (Heterogeneous Multiprocessing)
Described first in ARM’S Described first in ARM’s Described first in ARM’s
White Paper (2011) [3] White Paper (2012) [9] White Paper (2011) [3]
Used in Renesas MP 6530 (2013)
Samsung Exynos 5 (2 + 2 cores)
Octa 5410 (2013)
(4 + 4 cores) Samsung HMP on
Exynos 5

Octa 5420 (2013)
(4 + 4 cores)

Qualcomm Snapdragon
835 (MSM8998) (2016)
(4 + 4 cores)

big.LITTLE reloaded: DynamIQ

DynamlQ big.LITTLE

A new single cluster design for
big.LITTLE

Increased efficiency from shared
memory between CPUs

Higher performance through faster
task migration

DynamlQ boosting AlI/ML performance both on CPU and in system

Dedicated processor instructions Improved access to
acceleration

R 3

Y

ARMDYNAMIQ

More than 50x Al performance

boost on the CPU in the next 3-5 Up to 10x quicker
years response to accelerators

Heterogeneous SoCs

Heterogeneous SoCs

* DynamlQ is not only about a multicore CPU
e Specialization is key
* Accelerators everywhere

— Many ways to build accelerators...

Energy Efficiency vs. Flexibility

Energy cost of mining for various tools by type

100.00 -
10.00 -
N Miner
S
o —— ASIC
= FPGA
a; 1.00 -
o - AMD
[
o —o— NVidia
S
S ~- CPU
0.10
0.01-
]
I I 1 1 I 1
1 10 100 1,000 10,000 100,000

Mhash per second

The more specialized the more efficient...

But design has a (large) cost

180 1 39Mu’
160 - ->ASIC Design Starts Lag Moore’s Law 2"
140 -
120 -
100 - 22Mu’
80 -
60
40
20
0 -

"\ Masks &
Prototype Validation

R

Software Development
& Test

13Mu’
@45/40nm

IMu’

Hardware Design,
Architecture,
Verification, Layout

Development Cost ($M)

V\

|

|

65nm 45nm/40nm 28nm 20nm

Process Node

Souwrce: Dr. Handel Jones, IBS “Factors for Success in System IC Business and limpact on Business Model”, O4 2012Report.
Design costs shown based on complex, primary designs. Less complex derivative designs have lower cost
(nominally ~ 40% of the cost shown for complex primary designs).

Socketvolume assumptions: 20% of Revenue on R & D and $20 average selling price per unit

Programmable solutions dominate...

Integrated SoC Mobile

* High-speed SMP for “almost sequential” GP

* “Processor arrays” for domain-specific throughput computing
(100x GOPS/W) ultra parallel...

Digital Baseband SoC
Igital Baseband >o Modem subsystem:

_Multiple cores +

internal memory

Video and Imaging: -
Careful balance between
hardware vs. embedded
cores for cost vs. flexibility

| Application CPU:

Graphics: nm . .
Massive dedicated ~E8 Cantre! big.Little

processing needs.
Multiple pipelines

24

H-SOC in 2016/17 Tegra X1

Maxwell

4k 60 fps | LPDDR4 4K 6OFPS

Displa memory E\n{)ig:(;)e

controller controller Decode 4 A57

; 4k
Securit HDMI 2.0 Dual

Offloads \inep 5 Display [4 A53

SPI MIPI ISP Audio
SDIO CSI-2 engine

Figure 1 NVIDIA Tegra X1 Mobile Processor

| EmEm -i-- » r—
y 1, EmEm mEes [=ees snan
Y EEEEs EEEE EEEE EEEE |
! EREE EREE EEEE EEEE |

w U eeee meew (| | ==sm smam

FEEE EEEE | /i, INEE EEEN
F = ENEE EEEN |
i mmmE amam
" AEEE EEEE
EEEE EEEN |

TEGRA X1
CPU CONFIGURATION

4 HIGH PERFORMANCE A57 BIG CORES

2MB L2 cache
48KB L1 instruction cache
32KB L1 data cache

4 HIGH EFFICIENCY A53 LITTLE CORES

512KB L2 cache
32KB L1 instruction cache
32KB L1 data cache

GPU

SMs

CUDA Cores
GFLOPs (FP32) Peak
GFLOPs (FP16) Peak
Texture Units

Texel fill-rate
Memory Clock
Memory Bandwidth
ROPs

L2 Cache Size
Manufacturing Process
Z-cull

Raster

Texture

ZROP

Tegra X1 GPU

Tegra K1 (Kepler GPU)

1
192
365
365
8
7.6 Gigatexels/sec
930 MHz
14.9 GB/s
4
128KB
28-nm
256 pixels/clock
4 pixels/clock
8 bilinear filters/clock
64 samples/clock

Tegra X1 (Maxwell GPU)

2
256
9512
1024
16
16 Gigatexels/sec
1.6GHz MHz
25.6 GB/s
16
256KB
20-nm
256 pixels/clock
16 pixels/clock
16 bilinear filters/clock
128 samples/clock

8.42mm

H-SOC in 2018 — Apple A12/A12X

9.89mm

v

DDR logic :l

system cache

slices (x4) GPU cores (x4)

and shared logic

Neural Engine
{cores x8)
Big coras (x2)

litthe cores (x4) Tech
i Insights
l

Al12 (iPhone XS) — 7nm

How many processors? A lot!
CPU: 2/4 “big” cores + 4 “small” cores
GPU: 4/6 cores

DOR logic

GPU Core0 GPU Core4 Tempest Tempost
GPU Coret GPU Core5 lonpest s
GPU Core2 GPU Core6
GPU Core3 CC Fabric

Video Processor

Depth Engine

o

HEVC En/Decoder

System Cache

NPU

Control MCU

Always-on MCU |

IMC

| Secure Enclave (SEP)

Audio Subsystem |

Storage
Controller

Display Engine

Al12X (iPad Pro 2018)

Accelerators: Neural Processing Unit (NPU) + Image Signal Processor (ISP)

MCUs: Control + Always-On

GPU acceleration

Why GPUs?

* Graphics workloads are embarrassingly
parallel

— Data-parallel
— Pipeline-parallel
* CPU and GPU execute in parallel
 Hardware: texture filtering, rasterization, etc.

Data Parallel

— Many workloads from real-life applications have
abundant parallelism

— Machine vision
— (Matrix multiply)

General-Purpose GPU (GPGPU)

GPU

What's in a GPU?

A GPU is a heterogeneous chip multi-processor (highly tuned for graphics)

HW
or
Sw?

Q J SIGGRAPHZ2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

“CPU-style” cores

‘ J SIGGRAPHZ011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Slimming down

Idea #1:

Remove components that
help a single instruction
stream run fast

f 2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Two cores (two fragments in parallel)

fragment 1 fragment 2

i had i ffuseShaders:
P va, te, =8 ple rd, v4, to
Wl afa] 1l r v, chafa)
dd r3, wl, cbafl add r vl, chafl], ra
dd r3, w2, af2 add r w2, cbafz], r3
mng 3 mp r r3; 1{a.8), 1{1i.a)
1 1 ra, r3
ul rl, r3
ul @2, F2, r3
o 3, 1[1.8)

Q 2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Four cores (four fragments in parallel)

[_ C
' '
4 '

) L)
| L
! '
' !
J l

f) SIGGRAPH2011

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Sixteen cores (sixteen fragments in parallel)

® ® @ ®
+ 4 i 4
+ 1 4 2
® ® ® 0o
® & 8 e
3 4 3 4
¥ 1 + +
® 0 ® o
®@ 6 0 e
+ 4 4 +
3 3 4 4
® ® ® ©
DB ® @ ®
' ' ' '
® ® 0 o ==

, 16 cores = 16 simultaneous instruction streams
{ ’ SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Instruction stream sharing

O = O O
+ 3 3 4
eofllk=-edlllnille But ... many fragments
= = ®» = _should !:)e able to share an
Instruction stream!
‘ Ej ‘ [E] ¢diffuseShader::
sample r@, v4, t8, s8
[}] [;] Clr] [:;] mul r3, ve, cba[a]
madd r3, vi, cb@[1], r3
' ' i T madd r3, v2, cb@[2], r3
) o ® O clmp r3, r3, 1(9.8), 1(1.8)
mul o8, ré, r3
[:] [:j [:J [:] mul o1, rl, r3
+ 4 ' 3 4

mul o2, r2, r3
mov o3, 1{(1.8)

RS
0«
O«
(]

l{ SIGGRAPHZ2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Recall: simple processing core

Q 2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Add ALUs

ldea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

SIMD processing

‘{}’ SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Modifying the shader

1](2)(3](a
5|(e][7][8
}

<VEC8_diffuseShader::

VECE_sample wvec_r@, vec_v4, i@, vec_s@
VECE_mul wec_r3, vec_wv@, cba[a]
VEC&_madd vec_r3, wvec_vl, cb8[1], vec_r3
VECE_madd vec_r3, wvec_v2, cb8[2], vec_r3
VECE_clmp vec_r3, vec_r3, 1(e.8), 1(1.9)
VECB_mul wec_oB, vec_r8, vec_r3
VECB_mul wec_ol, wvec_rl, vec_r3
VECB_mul wec_o2, vec_r2, vec_r3
VECE_mov o3, 1(1.8)

'
COE.
a0,

Q ‘2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

128 fragments in parallel

0ocoo 0Oooo Oooo Oooo
0000 00000 ©000 0000
+ 1 + +
4 ¥ 4 +
8888 8588 &8s Sess
0000 0ODO 0000 0000
0000 ©OODO OOOO O00O
B + + L
4 4 +
cgee =0 2gog ggse
ocooe eo 80 eoes
0000 0QOOO 0Qoo Q00O
0000 ©OODO ©O000 0000
+ + + +
4 + + +

e 8358 eass =888
6358 8888 8888 8883
+ + + L

+ +
2000
e0es

ssog ssss =g ==
, 16 cores = 128 ALUs , 16 simultaneous instruction streams
{J SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

In parallel

]

CL work items

ri

vertices/fragments
rimitives
n

Ope

g

.m

>
W
a4 * 44
a4 a4
. .
4 -
. o u
0o .
L
e d ||| Bt
.0 oo
s 8
g5 ul~gy

primitives

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

@ SIGGRAPH2011

GPU

Clarification

SIMD processing does not imply SIMD instructions
» Option 1: explicit vector instructions
— x86 SSE, AVX, Intel Larrabee

« Option 2: scalar instructions, implicit HW vectorization

— HW determines instruction stream sharing across ALUs (amount of sharing
hidden from software)

— NVIDIA GeForce (“SIMT” warps), ATI Radeon architectures (“wavefronts”)
L1 L] []

oooooooD DoOooooO0o0ooooog
ooooooon s}s)s]=|s|s|s|s]s]=]=|s|=|=)]s]

oo o |
oooo

|00

|00

In practice: 16 to 64 fragments share an instruction stream.

@ SIGGRAPH2011

_ Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

But what about branches?
BRI

ALUTALLUZ ALU 8

<unconditional
shader code>»

if (x > @) {

y = pow(Xx, exp);
y *= Ks;

Time (clocks)

refl = y + Ka;
} else {
X = 0;

refl = Ka;

<resume unconditional
shader code>»

v

Q ‘2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

But what about branches?

K0 | L L ([T R

ALUTALLUZ ALU 8

Time (clocks)

<unconditional
shader code>»

if (x > @) {
y = pow(x, exp);
y *= Ks;

refl = y + Ka;
} else {)
X = 08;

refl = Ka;

<resume unconditional
shader code>»

e ‘2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

But what about branches?
)]sl

ALUT AL 2 ALU 8

Time (clocks)

<unconditional
shader code>

if (x > @) {

¥resume unconditional

Not all ALUs do useful work! shader code>
Worst case: 1/8 peak

- performance
J SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Stalls!

Stalls occur when a core cannot run the next instruction
because of a dependency on a previous operation.

Texture access latency = 100’s to 1000’s of cycles

We've removed the fancy caches and logic that helps avoid stalls.

‘(/ SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

But we have LOTS of independent fragments.

|dea #3:

Interleave processing of many fragments on a single
core to avoid stalls caused by high latency operations.

l{ SIGGRAPHZ2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Hiding shader stalls

Time (clocks) Frag1...8
e e e i

S
f 2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Hiding shader stalls

Time (clocks) Frag1...8 Frag9 ... 16 Frag 17 ... 24 Frag 25 ... 32
| o o o o ooooooOoog o o | o o o o o [

“ 12 13 4

S
f 2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Hiding shader stalls

Time (clocks) Frag1...8 Frag9 ... 16 Frag 17 ... 24 Frag 25 ... 32
oooOooooo i i o T o [[o o i o [(o i o [

o 2] 3 L4

Runnable

S
Q) SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Hiding shader stalls

Time (clocks) Frag1...8 Frag9 ... 16 Frag 17 ... 24 Frag 25 ... 32
(o o [o o OoOoo0Ooooo OoOO0O0000 o | o o o o

© 4

T - N -
_— - F‘%
HT
e J EIGGHAFHQDH Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Throughput!

Time (clocks) Frag1...8 Frag9 ... 16 Frag 17 ... 24 Frag 25 ... 32
T T T o T [(i s T e [ooOoooooo OoOooOoooc

e e e o

Start

) StaIFi I
— StalIF{

Start

Runnable

. Stall =
w
Runnable

S
4 2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Done!

Increase run time of one group
to increase throughput of many groups Donel

GPU

Storing contexts

f) SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Eighteen small contexts (maximal iatency hiding)

{[] SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Twelve medium contexts

‘{)’ SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Four large contexts (low latency hiding ability)

f 2 SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Clarification

Interleaving between contexts can be managed by
hardware or software (or both!)

« NVIDIA / ATI Radeon GPUs
— HW schedules / manages all contexts (lots of them)

— Special on-chip storage holds fragment state
 Intel Larrabee

— HW manages four x86 (big) contexts at fine granularity

— SW scheduling interleaves many groups of fragments on each HW context
— L1-L2 cache holds fragment state (as determined by SW)

‘(/ ‘{ SIGGRAPH2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

GPU

Example chip

—_m_m: m
_H_ﬂ:

e
fo)
nV.v —~
® N N
[0)] () = R
- 7 = = G
m () ()
c e -
r - —_—
» Om Ba =
- o o ® E g
2 2% §®» £ O
A) mn %n 5 —l
) Mﬂla =20 =20 Q L
@ ® = pon B — | & BT~ = ()
. €0 €O Q
[®) = i ey 0 ey O ©
O o) nEs OF o)
= o
© S 02 @ =
= e & oS To) I

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

@ SIGGRAPH2011

GPU

Summary: three key ideas

1. Use many “slimmed down cores” to run in parallel

2. Pack cores full of ALUs (by sharing instruction stream across
groups of fragments)

— Option 1: Explicit SIMD vector instructions
— Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution of many groups of
fragments

— When one group stalls, work on another group

‘(/ ‘{ SIGGRAPH:2011 Beyond Programmable Shading Course, ACM SIGGRAPH 2011

FPGA acceleration

FPGA

Computer architecture combining some of the flexibility of
software with the high performance of hardware by processing
with very flexible high speed computing fabrics like field-
programmable gate arrays (FPGAs).

* The principal difference when compared to using ordinary
microprocessors is the ability to make substantial changes to
the datapath itself in addition to the control flow.

* The main difference with custom hardware, i.e. application-
specific integrated circuits (ASICs) is the possibility to adapt
the hardware during runtime by "loading"” a new circuit on the
reconfigurable fabric.

[wikipedia]

FPGA Architecture

RIRIRIRIN NN NN NN NINIEIN

The basic structure of an FPGA is

_ [] Programable 10 []
composed of the following elements: = [uc Logic Logic Logic] | D
> Look-up table (LUT): This element E block | [| block block | § [block S
performs logic operations — g = g e]
> Flip-Flop (FF): This register [] g [Plock block block block | [
element stores the result of the e < =
[|= Logic Logic Logic Logic | ® []
LUT [E block block block block E []
. o =
> Wires: These elements connect L} 2 E‘D
elementsdtolonke another, both E el e LOOIE (e -OTC S
Logic and cloc]]
> Input/Output (I/O) pads: These T | G| bioek | | block || | block | |-
p.hy3|cal.ly available ports get - e =
signals in and out of the FPGA. JUoyooooooogpooogd

Interconnect Switch matrix

EUROPEAN
*. SPALLATION
’ SOURCE

FPGA Components: Logic

How can we implement any circuit in an FPGA?
Combinational logic is represented by a truth table \D

(e.g. full adder).) O—s

» Implement truth table in small memories (LUTS).

» A function is implemented by writing all possible Cou
values that the function can take in the LUT

» The inputs values are used to address the LUT
and retrieve the value of the function Truth Table S-input, 2-output LUT
corresponding to the input values A :

(=]

0 B

2|=a|la2|o|lo|lo|o|>
“~lolo|s|lo|=|=oOo|®

0
1
0
1
0
1
0
1

=|l=alojlo|l=]|=2|o|O
alalalolalole

0
0
1
0
1
1
1
}
C

N a— s|lo|lo|l=|o| ==

out

"~ | ESS | FPGA for Dummies | 2015-12-08 | Maurizio Donna

il

http://en.wikipedia.org/wiki/Image:Full-adder.svg

FPGA Components: Logic

A LUT is basically a multiplexer that 5 S
: 0
evaluates the truth table stored in the 1 : state
configuration SRAM cells (can be seen as / flip-flop
a one bit wide ROM). configura- oL
tion cell B \1
How to handle sequential logic? =Pt :\} Al TQ
Add a flip-flop to the output of LUT _ = = = =~
(Clocked Storage element). i’i
A, cor_'nnection FD
This is called a Configurable Logic Block Ag://” switch matrix
(CLB): circuit can now use output from FF

LUT or from FF.

2

FPGA Components: wires

AN
Q° «° &
Before FPGA is programmed, it - /\ ‘
doesn’t know which CLBs will be bouble LTI
connected: connections are | g o
design dependent, so there are Singles ¢ 1 i {
wires everywhere (both for DATA 5 Sk Pass Transistors
and CLOCK ||||| Double : : Interconnect Point
CLBs are typically arranged in a
grid, with wires on all sides.
Connection box o
configuration
] <| _’o_control
ware |
DATA._[_L_DQ_

To connect CLB to wires some
Connection box are used: these devices
allow inputs and outputs of CLB to
connect to different wires

5 M

ESS | FPGA for Dummies | 2015-12-08 | Maurizio Donna

ol

FPGA Components: wires

Connection boxes allow CLBs to connect to routing wires but that only
allows to move signals along a single wire; to connect wires together
Switch boxes (switch matrices) are used: these connect horizontal
and vertical routing channels. The flexibility defines how many wires a
single wire can connect into the box.

Switch box/matrix +

ROUTABILITY is a measure of the

number of circuits that can be routed | -
—
- 8
BETTER ROUTABILITY

Q o x; : ESS | FPGA for Dummies | 2015-12-08 | Maurizio Donna

HIGHER FLEXIBILITY

ol

FPGA Components: wires

FPGA layout is called a “FABRIC”: is a 2-dimensional array of CLBs and
programmable interconnections. Sometimes referred to as an “island

” .
style” architecture. —
Frogrammable Frogrammable ’Jj
lagic block switching matrix 16x1 RAM
; Pragrammalle a 4;_TJPTUt
connection matrlx b
c B Y
mux
d B flip-flop
[y T I
e >
clock ‘
Local clock enable + 1
i tracking bus
- set/reset
Global
tracking bus

Medium Short
[/ [— Inthe switch boxes there are short channels (useful
=] — for connecting adjacent CLBs) and long channels
(useful for connecting CLBs that are separated, this

[[] [_] reduce routing delay for non-adjacent CLBs)

EUROPEAN

SPALLATION s < ‘ '
ﬁlﬁcs | ; . vl 4 ESS | FPGA for Dummies | 2015-12-08 | Maurizio Donna

’".?ﬂ

FPGA Components: memory

elements that can be used as random-access

BR - The FPGA fabric includes embedded memory

— memory (RAM), read-only memory (ROM), or

(BRAMS), LUTs, and shift registers.

| — shift registers. These elements are block RAMs

Using LUTs as SRAM, this is called
DISTRIBUTE RAM

Included dedicated RAM components in the FPGA fabric are called
BLOCKs RAM

FPGA Components: input/output

1 2 3 4 5 6
vo
ROG_B LPo GND
o [7e]
vo vo vo vo
Lot 3 | Love s [IEENCE) LIOPO 1 ogp o | Losp o
wsvine | &3
Vo o
vo vo o
GND Lion_o LoaN_0
EUERNTEE] Ry~ BT T
o vo
Loan 3 | Lo3e_s
* | >
INPUT
VREF_3
o
vo
Vo
VREF_3
€3
vo vo vo
L08P_3 | LOBN 3 | L09P_3
o ' m} NJE mr_a
LO1P_2 D
e [0
o o o o PUT
LOINE | Cpos v.r:;rr_z
INTE | caB
5] Vo
LazP_2 o > 2
DouUT 05
BUSY

EUROPEAN

SPALLATION

g
]
Z

5| 25 %

s55[ssls

§is

CRER

Plozizesis

® 5[gE

1 - B
isaiskiis

siis|fis)eis

g [235(285(285] Bs
m L Lo x5 [

LB

The IO PAD connect the signals from
the PCB to the internal logic.

The [OB are organized in banks
(depending on the technology and the
producer the number of IOB per bank
change).

All the PAD in the same bank, share a
common supply voltage: not all the
different standard could be implemented
at the same time in the same bank!!!!

There are special PAD for ground
(GND), supplies (VCC, VCCINT,
VCCAUX, etc...), clocks and for

programming (JTAG).

FPGA Components: mput/output

The 10 Blocks (I0B) support a wide range of
commercial standard (LVTTL, LVCMQOS,
LVDS, etc...) both single ended and
differential (in that case pair of contiguous
pad are used).

In the PAD are available FF that are useto ' EE
resynchronize the signal with the internal oD

clock.

Library

Library

Library

Library

Library

HW Design flow

ASIC Flow

Text Editor

ModelSim

Synopsys

NC-Verilog

Innovus

NC-Verilog,

Verilog-XL

Design Spec Design Spec

HDL Design HDL Design

N I
Simulation Simulation
I N

]

I N

Post Timing
Simulation Simulation

FPGA Flow
(Xilinx)

Text Editor

ModelSim -

Vivado -

Vivado -

Vivado

ModelSim,

FPGA Vendor

Library

Library

Library

Library

Library

Designing with FPGA

e FPGAs are configured using a HW design flow
— Describe the desired behavior in a HDL
— Use the FPGA design automation tools to turn the HDL
description into a configuration bitstream
* After configuration, the FPGA operates like
dedicated hardware

« HW design expertise needed, low abstraction
evel, much slower than SW design on
orocessors!

What about mixing FPGAs and Processors?

Traditional Discrete Component Architecture

external links (/ ‘\

FPGA

Source: The Zynq Book

Heterogenous Architecture CPU+FPGA

& XILINX

ALL PROGRAMMABLE.

AXI|
Interfaces

Zynq

Programmable
Logic

Source: The Zynq Book

Mapping of an Embedded SoC
Hardware Architecture to Zynqg

- Programmable
Logic

141

- ARM® Dual
Cortex™-A9MPCore
- Complex

Common Accelerators
Custom Accelerators

Source: Xilinx White Paper: Extensible Processing Platform

WP3ED 0442310

Comparison with Alternative Solutions

Performance + + +
Power + + +
Unit Cost + S]
Total Cost of [] b S +
Ownership

Risk + +

Time to Market + + S
Flexibility o ot
Scalability O ot +

positive, negative, B neutral

Source: Xilinx Video Tutorials

Basic Design Flow for Zyng SoC

Requirements

Specification

System Design

Software / Hardware
Partitioning

Hardware
Development Development

and Testing : and Testing

ane esn Source: The Zyng Book

Design Flow for Zyng SoC

Y

System
Architecture

Software
Architecture

Y

Hardware
Architecture

Y Y \

Partner IP

WP359_05_041810

Source: Xilinx White Paper: Extensible Processing Platform

